建立一个对话体现的代理执行现实生活任务一直是一个长期而又具有挑战性的研究目标,因为它需要有效的人类代理沟通,多模式理解,远程顺序决策等。传统的符号方法具有扩展和概括问题,而端到端的深度学习模型则遭受数据稀缺和高任务复杂性的影响,并且通常很难解释。为了从两全其美的世界中受益,我们提出了一个神经符号常识性推理(JARVIS)框架,用于模块化,可推广和可解释的对话体现的药物。首先,它通过提示大型语言模型(LLM)来获得符号表示,以了解语言理解和次目标计划,并通过从视觉观察中构建语义图。然后,基于任务和动作级别的常识,次目标计划和行动生成的符号模块。在Teach数据集上进行的大量实验验证了我们的JARVIS框架的功效和效率,该框架在所有三个基于对话框的具体任务上实现了最新的(SOTA)结果,包括对话记录(EDH)的执行,对话框的轨迹, (TFD)和两个代理任务完成(TATC)(例如,我们的方法将EDH看不见的成功率从6.1 \%\%提高到15.8 \%)。此外,我们系统地分析了影响任务绩效的基本因素,并在几个射击设置中证明了我们方法的优越性。我们的Jarvis模型在Alexa奖Simbot公共基准挑战赛中排名第一。
translated by 谷歌翻译
视觉和语言导航(VLN)任务要求代理根据语言说明浏览环境。在本文中,我们旨在解决此任务中的两个关键挑战:利用多语言指令改进教学路径接地,并在培训期间看不见的新环境中导航。为了应对这些挑战,我们提出了明确的:跨语性和环境不可屈服的表示。首先,我们的经纪人在室内室内数据集中学习了三种语言(英语,印地语和泰卢固语)的共享且视觉上的跨语言表示。我们的语言表示学习是由视觉信息对齐的文本对指导的。其次,我们的代理商通过从不同环境中最大化语义对齐的图像对(对象匹配的约束)之间的相似性来学习环境不足的视觉表示。我们的环境不可知的视觉表示可以减轻低级视觉信息引起的环境偏见。从经验上讲,在房间 - 室内数据集中,我们表明,当通过跨语性语言表示和环境 - 非局部视觉表示形式概括地看不见的环境时,我们的多语言代理在所有指标上都比强大的基线模型进行了巨大改进。此外,我们表明我们学到的语言和视觉表示可以成功地转移到房间和合作的视觉和二元式导航任务上,并提出详细的定性和定量的概括和基础分析。我们的代码可从https://github.com/jialuli-luka/clear获得
translated by 谷歌翻译
对心理健康支持的需求不断增长,强调了对话代理在全球和中国作为人类支持者的重要性。这些代理可以增加可用性并降低心理健康支持的相对成本。提供的支持可以分为两种主要类型:认知和情感支持。关于该主题的现有工作主要集中在采用认知行为疗法(CBT)原理的构造药物上。此类代理根据预定义的模板和练习来运行,以提供认知支持。但是,使用此类药物对情绪支持的研究是有限的。此外,大多数建设的代理商都以英语运作,强调了在中国进行此类研究的重要性。在这项研究中,我们分析了表情符疾病在减少精神痛苦症状方面的有效性。 Emohaa是一种对话剂,通过基于CBT的练习和指导性对话提供认知支持。它还通过使用户能够发泄所需的情绪问题来支持情感上的支持。该研究包括134名参与者,分为三组:Emohaa(基于CBT),Emohaa(Full)和控制。实验结果表明,与对照组相比,使用Emohaa的参与者在精神困扰症状方面的改善得到了更大的改善。我们还发现,添加情感支持剂对这种改善,主要是抑郁和失眠有互补的影响。根据获得的结果和参与者对平台的满意,我们得出结论,Emohaa是减少精神困扰的实用和有效工具。
translated by 谷歌翻译
文献中已经提出了各种公平限制,以减轻小组级统计偏见。它们的影响已在很大程度上评估了与一组敏感属性(例如种族或性别)相对应的不同人群。尽管如此,社区尚未观察到足够的探索,以实例限制公平的限制。基于影响功能的概念,该措施表征了训练示例对目标模型及其预测性能的影响,这项工作研究了施加公平性约束时训练示例的影响。我们发现,在某些假设下,关于公平限制的影响功能可以分解为训练示例的内核组合。提出的公平影响功能的一种有希望的应用是确定可疑的训练示例,这些训练示例可能通过对其影响得分进行排名来导致模型歧视。我们通过广泛的实验证明,对一部分重量数据示例进行培训会导致违反公平性的侵犯,而准确性的权衡。
translated by 谷歌翻译
Given an algorithmic predictor that is "fair" on some source distribution, will it still be fair on an unknown target distribution that differs from the source within some bound? In this paper, we study the transferability of statistical group fairness for machine learning predictors (i.e., classifiers or regressors) subject to bounded distribution shifts. Such shifts may be introduced by initial training data uncertainties, user adaptation to a deployed predictor, dynamic environments, or the use of pre-trained models in new settings. Herein, we develop a bound that characterizes such transferability, flagging potentially inappropriate deployments of machine learning for socially consequential tasks. We first develop a framework for bounding violations of statistical fairness subject to distribution shift, formulating a generic upper bound for transferred fairness violations as our primary result. We then develop bounds for specific worked examples, focusing on two commonly used fairness definitions (i.e., demographic parity and equalized odds) and two classes of distribution shift (i.e., covariate shift and label shift). Finally, we compare our theoretical bounds to deterministic models of distribution shift and against real-world data, finding that we are able to estimate fairness violation bounds in practice, even when simplifying assumptions are only approximately satisfied.
translated by 谷歌翻译
标签噪声过渡矩阵,表示从干净标签到嘈杂标签的过渡概率,对于设计统计上强大的解决方案至关重要。噪声过渡矩阵的现有估计器,例如,使用锚点或凝集性,专注于相对容易获得高质量表示的计算机视觉任务。我们观察到,由于非信息和信息性表示的共存,具有较低质量特征的任务无法满足锚点或凝聚力条件。为了解决这个问题,我们提出了一种通用和实用的信息理论方法,以减少质量较低特征的信息不足的部分。这种改进对于识别和估计标签噪声转变矩阵至关重要。显着的技术挑战是仅使用嘈杂标签而不是干净的标签来计算相关的信息理论指标。我们证明,著名的$ f $ - 潮流信息度量通常可以在使用嘈杂标签计算时保留订单。然后,我们使用此蒸馏版本的功能构建过渡矩阵估计器。通过评估具有较低质量特征的各种表格数据和文本分类任务的估计误差,还可以通过评估拟议方法的必要性和有效性。代码可在github.com/ucsc-real/beyondimages上找到。
translated by 谷歌翻译
相机本地化是许多机器人应用的根本和关键问题。近年来,利用基于相机的本地化的深度学习已成为一种流行的研究方向。然而,它们缺乏对大域移位的鲁棒性,这可能是由训练和测试数据集之间的季节性或照明变化引起的。数据增强是一种解决此问题的有吸引力的方法,因为它不需要提供额外的数据。然而,现有的增强方法盲目地扰乱了所有像素,因此无法实现令人满意的性能。为了克服这个问题,我们提出了一个旨在专注于扰动图像的几何信息的系统的系统。因此,它学会生成仍然能够困惑网络的最小图像扰动。我们表明,当这些例子用作增强时,它大大提高了鲁棒性。我们表明,我们的方法优于先前的增强技术,并且在在“看不见”挑战性天气条件上测试时,比SOTA定位模型(例如,ATLOC和MAPNET)高达两倍的准确性。
translated by 谷歌翻译
多标签图像分类是计算机愿景中的基本但具有挑战性的任务。在过去的几十年里,解决方案探索语义标签之间的关系取得了很大进展。然而,标签的潜在空间上下文信息被剥削。为了解决这个问题,提出了一种空间背景感知的深神经网络,以考虑语义和空间信息的考虑标签。在Microsoft Coco和Pascal VOC上评估了这一提议的框架,用于图像多标签的两个广泛使用的基准数据集。结果表明,该方法优于处理多标签图像分类问题的最先进解决方案。
translated by 谷歌翻译
在本文中,我们回答了插入标签噪声(较少的信息标签)时的问题,而是返回更准确和公平的模型。我们主要通过三次观察启发:1)与降低标签噪声速率相比,增加噪声速率易于实现; 2)增加某类实例的标签噪声以平衡噪声速率(增加到平衡)导致更容易的学习问题; 3)增加对平衡改善了对标签偏差的公平保障。在本文中,我们首先通过增加一组实例的标签噪声率W.r.t.来量化推出的权衡。损失标签信息和降低的学习困难。我们在改善泛化能量或公平保证方面,我们分析了这样的增加是有益的。然后,我们介绍一种方法来正确插入标签噪声,以便与嘈杂的标签学习学习的任务,无论是没有还是公平约束。我们面临的主要技术挑战是由于我们不知道哪些数据实例遭受更高的噪音,而且我们不会有地面真理标签来验证任何可能的假设。我们提出了一种检测方法,可以向我们通知我们,在不使用地面真理标签的情况下,哪一组标签可能会遭受更高的噪音。我们正式建立了提出的解决方案的有效性,并通过广泛的实验证明了它。
translated by 谷歌翻译
The decision tree is one of the most popular and classical machine learning models from the 1980s. However, in many practical applications, decision trees tend to generate decision paths with excessive depth. Long decision paths often cause overfitting problems, and make models difficult to interpret. With longer decision paths, inference is also more likely to fail when the data contain missing values. In this work, we propose a new tree model called Cascading Decision Trees to alleviate this problem. The key insight of Cascading Decision Trees is to separate the decision path and the explanation path. Our experiments show that on average, Cascading Decision Trees generate 63.38% shorter explanation paths, avoiding overfitting and thus achieve higher test accuracy. We also empirically demonstrate that Cascading Decision Trees have advantages in the robustness against missing values.
translated by 谷歌翻译